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J .  Phys.: Condens. Matter 2 (1990) 5373-5381. Printed in the UK 

The statistical mechanics of the related S = 8 anisotropic 
and S = 1 pure biquadratic quantum spin chains 

I D Paczek and J B Parkinson 
Department of Mathematics, UMIST, PO Box 88, Manchester M60 lQD, UK 

Received 25 January 1990 

Abstract. We consider a quantum spin chain with S = 4 and anisotropic exchange ( X X Z  
model) with A = -9 .  This integrable system has a partial mapping to an S = 1 chain with 
pure biquadraticexchange. We calculate the magnetisation curves at zero temperature which 
are identical for the two systems. We also use the integral equations obtained by Gaudin to 
study the specific heat as a function of temperature and magnetic field. The results are 
compared with numerical calculations for short chains of the S = 1 system. The maximum 
occurs at approximately the same position for the two systems, but the shapes of the curves 
differ considerably. 

1. Introduction 

It has recently been shown (Parkinson 1987,1988) that a partial mapping exists between 
two quantum spin chains with different values of spin S. The two Hamiltonians are an 
S = 4 X X Z  model given by 

XI =Jz (S;Sf+l + S!SY+l + ASfSf+1) - H C S f  (1 * 1) 
i i 

and a pure biquadratic S = 1 model given by 

In both cases periodic boundary conditions are assumed so that S l f N  = Si, where N is 
the number of atoms in the chain. Translational symmetry is incorporated by means of 
the wave-vector k .  The total z component S+ = Z, Sf commutes with both X I  and X 2 ,  
while the square of the total spin (with quantum number S,) commutes only with X 2 .  H 
is proportional to the magnetic field. 

States of the two Hamiltonians (1.1) and (1.2) have identical energies provided A = 
-B and J = 2J2, with the exception of states in which S+ = 0. The mapping between the 
two Hamiltonians is between 1-strings of (1.1) and 2-strings of (1.2), so states with 
S+ = r of the former have the same energies as states with S+ = 2r of the latter. The 
mapping is only partial, however, and for a given St;. there are many more states of (1.2), 
including those for which S+ < ST. Nevertheless, the lowest states for each value of S+ 
and k are the same for the two Hamiltonians. 

Barber and Batchelor (1989) have recently shown that states with St;. = 0 of the two 
Hamiltonians are the same in the thermodynamic limit, N - ,  CQ (they actually considered 
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a system without periodic boundary conditions). A similar conclusion was reached by a 
different method by Klumper (1989). X 2  is antiferromagnetic for J 2  < 0 and ferro- 
magnetic for J 2  > 0 and, although the eigenstates are the same for either sign (with 
different eigenvalues), J 2  will be assumed negative, and hence J = 2J2 will also be 
negative. For convenience we shall put J = -1, which is equivalent to measuring Hand  
the energies in units of IJI. 

For H = 0 the ground state of (1.1) was given by Orbach (1958) and Walker (1959). 
It is doubly degenerate with energy Eo = - N w ,  where, definingx = (7 + 3d5) /2  

X 

w = (v5/2)($ + 2 (1 + ..)-I) = 1.796 864. 
n =  1 

The elementary excitations were calculated by des Cloiseaux and Gaudin (1966) using 
the same method that des Cloiseaux and Pearson (1962) had used for the isotropic 
Heisenberg model (i.e. A = 1). For S+ = 1 they found a spectrum with a gap from the 
ground state which for A = -P has the value 0.173 179. The analytic form (Gaudin 1971) 
is 

E G ~ ~  = 2V"3 dn(n) = V"3A2 = 0.173 179 (1.4) 

where 
X 

A = 1 + 2 (-l)"qri2 with q = (3 - %"3)/2. 
n = l  

The form of the spectrum given in their paper can be rewritten in a simpler form, by 
making use of the series expansions and other relations of the Jacobian elliptic functions. 
When this is done the result is 

%(k)  = EGapvl + a sin2 k (1.5) 

where a = ml/m,  using the standard notation for elliptic functions. 
They also found another spectrum for S+ = 0 with identical form but no gap. The 

end points of this are the doubly degenerate ground state, but for all other values the 
results are incorrect. They are based upon an assumption about the allowed distribution 
of integers in the Bethe ansatz equations. This distribution is not observed in short-chain 
calculations, using the method of Hodgson and Parkinson (1984). 

2. The zero-temperature magnetisation curve 

The magnetisation CT = S + / N S  for a given H depends only on the lowest eigenvalue for 
each S+ of the Hamiltonian and not on its degeneracy. Consequently it will be identical 
for (1.1) and (1.2) apart from a factor of 2 for the reasons noted above. The curve was 
calculated for the isotropic S = 4 Heisenberg Hamiltonian by Griffiths (1964). We 
calculateitforthespecificcase A = -3, usingthemethodofYangandYang(1966a, b, c). 



Comparison of S = i and S = 1 quantum spin chains 5375 

Figure 1. The magnetisation curve for both (1.1) and (1.2). The asymptotic formulae for a 
close to 0 and to a,,,,, are also shown. The inset is an enlargement of the low-a region. 

The integral equation that has to be solved is 

f c ( f >  = go( [ )  - J C  WE, r)fc(r> d r  
--c 

wherego([) = (2/n)(l + f 2 ) - ' ,  

2 1 - ia(1- $) 
K ( E ,  r, = n [2 - a ( 1  - r5)]2 + ( f  - r)2 

and a = 1 - l / A .  The parameter c is related to the magntisation U by U = 1 - p with 
r c  

and the energy is given by 

The corresponding magnetic field is obtained from the equation 

H = 3 d%/dp. (2.3) 

The procedure in practice involves choosing a value of c ,  determining fc([) from 
(2.1), then evaluating the corresponding values of U and H .  The integral equation is 
solved numerically by dividing the range into 300 equal intervals, thus converting it to a 
matrix equation. The result is shown in figure 1. 

There are two critical fields: HSF = 5 is the spin-flop field at which the magnetisation 
reaches its maximum value U = 1, and H ,  = EGap is the field at which U becomes 0. For 
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k 

Figure 2. The tracking soft mode for a chain of 14 atoms for (1.1). Curves are labelled with 
the values of S+. Equations (1.2) are identical apart from a factor of 2 in the values of SS. 

IJ close to 1 a simple spin-wave approximation gives H = 5 - (3n2/8)(1 - a)*. For IJ 
close to 0 the asymptotic expression is given by Yang and Yang as 

H = 2d/S[eo + (4n2e2/e;)a2 - (64n3e2fo/3e:)a3 + . . . ]  
H =  + (6.35 x 1 0 ~  - 5.43 x 10503 + . . .) 

eo = dn (n) e2 = (mK2/2n2)eo fo = w / ( v 3 n ) .  

where 

Both these limiting cases are shown on the figure. 

3. The spectrum for H f 0 

The elementary excitations at T = 0 in the presence of a field fall into three categories. 
For H < H, there is a gap equal to Hc - H ,  but otherwise the spectrum is the same as at 
H = 0. For H,  s H s HSF the spectrum is gapless and exhibits a tracking soft mode 
(Beck et a1 1981). For H > HSF there is again a gap, equal to H - HSF and the form of 
the spectrum above this gap is the usual ferromagnetic spin-wave spectrum. 

The most interesting region is the gapless one. The tracking soft mode has a zero at 
wave-vector k* = (1 - a)n. Such a mode was first predicted by Ishimura and Shiba 
(1977) for the A = 1 case. In fact the spectrum is periodic with this period (Aghahosseini 
and Parkinson 1980). For /AI > 1 the spectrum is slightly different, in that minima for 
successive values of S+ always occur at k = 0 instead of alternating between k = 0 and 
k = n. This is connected with the fact that ST is no longer a good quantum number. 

Calculation of the details of the spectrum in this region is rather complicated and we 
have not carried it out. The phenomenon can be observed in short chains, although for 
finite N the soft mode does not come down to zero. In figure 2 we show the lowest 
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energies for each S$ for a chain of 14 atoms for ( l . l ) ,  relative to the corresponding 
energy at k = 0. For (1.2) the same spectrum occurs for even values of S+, with a factor 
of 2 in these values, but the spectrum for odd values has additional features (see 
Parkinson 1988). 

4. Non-zero-temperature properties 

The anisotropic S = 4 Hamiltonian (1.1) can be analysed at non-zero temperature in 
terms of strings, using the method originally pioneered for ID magnets by Takahashi 
(1971). For (1.1) the relevant equations were given by Gaudin (1971) (see also Johnson 
1974). The low-temperature behaviour for all A and H was thoroughly analysed by 
Johnson and McCoy (1972) and numerical solutions for some values of A and Hover the 
whole temperature range were given by Johnson (1974). We have solved the equations 
numerically for the specific case A = -3 for various H .  

In addition, numerical results for short chains ( N  S 14) can be obtained by direct 
diagonalisation of the Hamiltonian, and these were used to verify the numerical solution 
of the integral equations for higher T.  This second method of direct diagonalisation is 
the only method available for studying (1.2) for T # 0, since the mapping between the 
two Hamiltonians is only partial. 

The integral equations, which have to be solved self-consistently for the variables 
&?I(@)? are 

&n/T= Dn*{ln([l+ exp(&n+I/T)I[1 + e x ~ ( ~ n - l / T ) I ) }  n > l  (4 . la)  

E ~ / T  = Dn*{ln[l + e x p ( ~ ~ / T ) ] }  - T-' sinh Q, Dn(@) (4.lb) 

where cosh Q, = IAI and Dn(@) = ( K / n )  dn(K@/n, m) with K/K '  = n/@, using the 
usual notation for the elliptic function (Abramowitz and Stegun 1964). The convolution 
Dn* is defined as 

The coupled equations are completed by taking the asymptotic limit 

where 

(n  + constant H = O  

Y n  = sinh(nH/2T + constant) \ sinh(H/2T) 
H # 0. 

(4.4) 

The constants are not strictly necessary in the limit n + 
gence. 

but greatly speed up conver- 
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Figure 3. Specific heat curves at H = 0 for (1.1) and (1.2) 

The free energy per atom is 

T "  
F(T, H ) / N  = E o / N  - y j  Dn(q5) ln[l + exp(e,/T)] d @  + OH (4.5) 

-n 

which depends explicitly only on el. Differentiating with respect to H gives the mag- 
netisation a(T, H ) .  Differentiating with respect to T gives the entropy S(T, H ) ,  and 
differentiating again with respect to T gives the specific heat CH(T,  H ) .  These dif- 
ferentiations were performed numerically. 

The H = 0 results are shown in figure 3. The results for (1.1) are shown directly and 
also divided by a factor of ln(3)/ln(2) in the vertical scale, which makes the area under 
the curves for the two Hamiltonians the same. This is because S = 1 has a multiplicity 3, 
while S = 1 has a multiplicity 2, resulting in a factor ln(3)/ln(2) in the entropy. 

Figure 4 shows specific heat curves for H # 0. The low-temperature behaviour for 
H = HSF for the two models is very similar, which we believe reflects the fact that the 
low-lying excitations in both cases are 'ferromagnetic' spin waves with the same energies 
and degeneracies. Figure 5 shows the T # 0 magnetisation curves. The magnetisation 
curves for short chains are stepped at T = 0 and although the steps become smoothed at 
higher temperature the short-chain results for the susceptibility have high peaks which 
would not be present in the infinite chains. Nevertheless, we show the susceptibility 
curves in figure 6, as the final peak close to HSF is clearly similar to the two models. 

5. High-temperature expansions 

One other method of comparing the behaviour of the two models in an analytic rather 
than numerical way is by means of the high-temperature asymptotic expansions. Since 
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Figure 4. Specific heat curves for various H .  In this and the following figures the full curve is 
for (1.1) and the broken curve for (1.2), while CH, H and Tare all expressed in units of IJ(. 
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Figure 5. Magnetisation curves for various T # 0. 
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Figure 6 .  Susceptibility curves for various T # 0. 

the S = 1 pure biquadratic Hamiltonian (1.2) is not fully integrable, the normal finite- 
temperature method used for (1.1) is clearly not available. Nevertheless, it is possible 
to obtain exact results for both Hamiltonians in the thermodynamic limit N +  m in the 
form of an expansion in powers of T-’. 

For H = 0 the first five terms in the series for (1.1) are given by Dalton and Wood 
(1967) and additional terms by Wood and Dalton (1972). We have used a simple version 
of the same method to calculate the first two terms for (1.2) for H = 0. 

Defining t2 = kBT/IJI and t 2  = kgT/2IJ2/, we have 

for (1.1) 

for (1.2).  

c - 17 -2 

CH = 8 tT2  + @ tY3 + . . . 
H - S t l  + f t ; 3 - 2 a  t T 4 f  . . .  

For H # 0, only the leading term for S = 1 Hamiltonian has been obtained: 

CH = (3 + H2/4)tT2 , .. 
These results are only valid at temperatures considerably higher than those shown 

in the figures, so they have not been displayed. 

6.  Conclusions 

The S = 1 XXZ model with A = -3 can be studied in great detail using the full power of 
the Bethe ansatz. Probably the only important quantity that is not available via this 
method is the correlation function. Because of the partial mapping to the S = 1 pure 
biquadratic model, some quantities are identical for the two systems, in particular the 
zero-temperature magnetisation curve and the spectrum of elementary excitations. 

We have found that non-zero temperature properties of the two systems are 
different. The differences are most marked for the specific heat, where the S = 1 curve 
is much broader, although the maximum is in approximately the same place. This 
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indicates that the density of states is less peaked, but covers a similar range of energies, 
as would be expected from the existence of the partial mapping. The magnetisation 
curves at non-zero temperature are not very different, and again this indicates that the 
low-lying states for each Sf have similar energies. 
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